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PREFACE

I wrote this book because I have a deep conviction that mathematics is about ideas,
not just formulas and algorithms, and not just theorems and proofs. The text cov-
ers the material usually found in a one or two semester linear algebra class. It is
written, however, from the point of view that knowing why is just as important as
knowing how.

To ensure that the readers see not only why a given fact is true, but also why it is
important, I have included a number of the beautiful applications of linear algebra.

Most of my students seem to like this emphasis. For many, mathematics has always
been a body of facts to be blindly accepted and used. The notion that they personally
can decide mathematical truth or falsehood comes as a revelation. Promoting this
level of understanding is the goal of this text.

Richard C. Penney
West Lafayette, Indiana
Updated with October, 2015
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FEATURES OF THE TEXT

Parallel Structure Most linear algebra texts begin with a long, basically com-
putational, unit devoted to solving systems of equations and to matrix algebra and
determinants. Students fnd this fairly easy and even somewhat familiar. But, after
a third or more of the class has gone by peacefully, the boom falls. Suddenly, the
students are asked to absorb abstract concept after abstract concept, one following
on the heels of the other. They see little relationship between these concepts and the
frst part of the course or, for that matter, anything else they have ever studied. By the
time the abstractions can be related to the frst part of the course, many students are
so lost that they neither see nor appreciate the connection.

This text is different. We have adopted a parallel mode of development in which
the abstract concepts are introduced right from the beginning, along with the compu-
tational. Each abstraction is used to shed light on the computations. In this way, the
students see the abstract part of the text as a natural outgrowth of the computational
part. This is not the “mention it early but use it late” approach adopted by some texts.
Once a concept such as linear independence or spanning is introduced, it becomes part
of the vocabulary to be used frequently and repeatedly throughout the rest of the text.

The advantages of this kind of approach are immense. The parallel development
allows us to introduce the abstractions at a slower pace, giving students a whole
semester to absorb what was formerly compressed into two-thirds of a semester.
Students have time to fully absorb each new concept before taking on another. Since
the concepts are utilized as they are introduced, the students see why each concept is
necessary. The relation between theory and application is clear and immediate.

Gradual Development of Vector Spaces One special feature of this text is its
treatment of the concept of vector space. Most modern texts tend to introduce this
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xiv FEATURES OF THE TEXT

concept fairly late. We introduce it early because we need it early. Initially, however,
we do not develop it in any depth. Rather, we slowly expand the reader’s understanding
by introducing new ideas as they are needed.

This approach has worked extremely well for us. When we used more traditional
texts, we found ourselves spending endless amounts of time trying to explain what a
vector space is. Students felt bewildered and confused, not seeing any point to what
they were learning. With the gradual approach, on the other hand, the question of
what a vector space is hardly arises. With this approach, the vector space concept
seems to cause little difficulty for the students.

Treatment of Proofs It is essential that students learn to read and produce proofs.
Proofs serve both to validate the results and to explain why they are true. For many
students, however, linear algebra is their frst proof-based course. They come to the
subject with neither the ability to read proofs nor an appreciation for their importance.

Many introductory linear algebra texts adopt a formal “defnition-theorem-proof”
format. In such a treatment, a student who has not yet developed the ability to read
abstract mathematics can perceive both the statements of the theorems and their proofs
(not to mention the defnitions) as meaningless abstractions. They wind up reading
only the examples in the hope of fnding “patterns” that they can imitate to complete
the assignments. In the end, such students wind up only mastering the computational
techniques, since this is the only part of the course that has any meaning for them. In
essence, we have taught them to be nothing more than slow, inaccurate computers.

Our point of view is different. This text is meant to be read by the student – all of it!
We always work from the concrete to the abstract, never the opposite. We also make
full use of geometric reasoning, where appropriate. We try to explain “analytically,
algebraically, and geometrically.” We use carefully chosen examples to motivate both
the defnitions and theorems. Often, the essence of the proof is already contained in
the example. Despite this, we give complete and rigorous student-readable proofs of
most results.

Conceptual Exercises Most texts at this level have exercises of two types: proofs
and computations. We certainly do have a number of proofs and we defnitely have lots
of computations. The vast majority of the exercises are, however, “conceptual, but not
theoretical.” That is, each exercise asks an explicit, concrete question which requires
the student to think conceptually in order to provide an answer. Such questions are
both more concrete and more manageable than proofs and thus are much better at
demonstrating the concepts. They do not require that the student already have facility
with abstractions. Rather, they act as a bridge between the abstract proofs and the
explicit computations.

Applications Sections Doable as Self-Study Applications can add depth and
meaning to the study of linear algebra. Unfortunately, just covering the “essen-
tial” topics in the typical frst course in linear algebra leaves little time for additional
material, such as applications.

Many of our sections are followed by one or more application sections that use
the material just studied. This material is designed to be read unaided by the student
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FEATURES OF THE TEXT xv

and thus may be assigned as outside reading. As an aid to this, we have provided
two levels of exercises: self-study questions and exercises. The self-study questions
are designed to be answerable with a minimal investment of time by anyone who has
carefully read and digested the relevant material. The exercises require more thought
and a greater depth of understanding. They would typically be used in parallel with
classroom discussions.

We feel that, in general, there is great value in providing material that the students
are responsible for learning on their own. Learning to read mathematics is the frst
step in learning to do mathematics. Furthermore, there is no way that we can ever
teach everything the students need to know; we cannot even predict what they need
to know. Ultimately, the most valuable skill we teach is the ability to teach oneself.
The applications form a perfect vehicle for this in that an imperfect mastery of any
given application will not impede the student’s understanding of linear algebra.

Early Orthogonality Option We have designed the text so that the chapter on
orthogonality, with the exception of the last three sections, may be done immediately
following Chapter 3 rather than after the section on eigenvalues.

True-False Questions We have included true-false questions for most sections.

Chapter Summaries At the end of each chapter there is a chapter summary that
brings together major points from the chapter so students can get an overview of what
they just learned.

Student Tested This text has been used over a period of years by numerous instruc-
tors at both Purdue University and other universities nationwide. We have incorpo-
rated comments from instructors, reviewers, and (most important) students.

Technology Most sections of the text include a selection of computer exercises
under the heading Computer Projects. Each exercise is specifc to its section and is
designed to support and extend the concepts discussed in that section.

These exercises have a special feature: they are designed to be “freestanding.” In
principle, the instructor should not need to spend any class time at all discussing
computing. Everything most students need to know is right there. In the text, the
discussion is based on MATLAB®.

Meets LACSG Recommendations The Linear Algebra Curriculum Study Group
(LACSG) recommended that the frst class in linear algebra be a “student-oriented”
class that considers the “client disciplines” and that makes use of technology. The
above comments make it clear that this text meets these recommendations. The
LACSG also recommended that the frst class be “matrix-oriented.” We emphasize
matrices throughout.
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CHAPTER 1

SYSTEMS OF LINEAR EQUATIONS

1.1 THE VECTOR SPACE OF m × n MATRICES

It is diffcult to go through life without seeing matrices. For example, the 2014 annual
report of Acme Squidget might contain the Table 1.1, which shows how much proft
(in millions of dollars) each branch made from the sale of each of the company’s
three varieties of squidgets in 2014.

TABLE 1.1 Profits: 2014

Red Blue Green Total

Kokomo 11.4 5.7 6.3 23.4
Philly 9.1 6.7 5.5 21.3
Oakland 14.3 6.2 5.0 25.5
Atlanta 10.0 7.1 5.7 22.8
Total 44.8 25.7 22.5 93.0

If we were to enter this data into a computer, we might enter it as a rectangular
array without labels. Such an array is called a matrix. The Acme profts for 2014
would be described by the following matrix. This matrix is a 5 × 4 matrix (read “fve
by four”) in that it has fve rows and four columns. We would also say that its “size”
is 5 × 4. In general, a matrix has size m × n if it has m rows and n columns.

Linear Algebra: Ideas and Applications, Fourth Edition. Richard C. Penney.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/penney/linearalgebra
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2 SYSTEMS OF LINEAR EQUATIONS

Definition 1.1 The set of all m × n matrices is denoted M(m, n).

P =

⎡⎢⎢⎢⎢⎢⎢⎣

11.4 5.7 6.3 23.4

9.1 6.7 5.5 21.3

14.3 6.2 5.0 25.5

10.0 7.1 5.7 22.8

44.8 25.7 22.5 93.0

⎤⎥⎥⎥⎥⎥⎥⎦
Each row of an m × n matrix may be thought of as a 1 × n matrix. The rows are

numbered from top to bottom. Thus, the second row of the Acme proft matrix is the
1 × 4 matrix

[9.1, 6.7, 5.5, 21.3]

This matrix would be called the “proft vector” for the Philly branch. (In general, any
matrix with only one row is called a row vector. For the sake of legibility, we usually
separate the entries in row vectors by commas, as above.)

Similarly, a matrix with only one column is called a column vector. The columns
are numbered from left to right. Thus, the third column of the Acme proft matrix is
the column vector

⎡⎢⎢⎢⎢⎢⎢⎣

6.3

5.5

5.0

5.7

22.5

⎤⎥⎥⎥⎥⎥⎥⎦
This matrix is the “green squidget proft vector.”

If A1, A2,… , An is a sequence of m × 1 column vectors, then the m × n matrix A
that has the Ai as columns is denoted

A = [A1, A2,… , An]

Similarly, if B1, B2,… , Bm is a sequence of 1 × n row vectors, then the m × n matrix
B that has the Bi as rows is denoted

B =

⎡⎢⎢⎢⎢⎣

B1

B2

⋮

Bm

⎤⎥⎥⎥⎥⎦
In general, if a matrix is denoted by an uppercase letter, such as A, then the entry in

the ith row and jth column may be denoted by either Aij or aij, using the corresponding
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THE VECTOR SPACE OF m × n MATRICES 3

lowercase letter. We shall refer to aij as the “(i, j) entry of A.” For example, for the
matrix P above, the (2, 3) entry is p23 = 5.5. Note that the row number comes frst.
Thus, the most general 2 × 3 matrix is

A =
[

a11 a12 a13

a21 a22 a23

]

We will also occasionally write “A = [aij],” meaning that “A is the matrix whose (i, j)
entry is aij.”

At times, we want to take data from two tables, manipulate it in some manner, and
display it in a third table. For example, suppose that we want to study the performance
of each division of Acme Squidget over the two-year period, 2013–2014. We go back
to the 2013 annual report, fnding the 2013 proft matrix to be

Q =

⎡⎢⎢⎢⎢⎢⎢⎣

11.0 5.5 6.1 22.6

9.0 6.3 5.3 20.6

14.1 5.9 4.9 24.9

9.7 7.0 5.8 22.5

43.8 24.7 22.1 90.6

⎤⎥⎥⎥⎥⎥⎥⎦
If we want the totals for the two-year period, we simply add the entries of this matrix
to the corresponding entries from the 2014 proft matrix. Thus, for example, over the
two-year period, the Kokomo division made 5.5 + 5.7 = 11.2 million dollars from
selling blue squidgets. Totaling each pair of entries, we fnd the two-year proft matrix
to be

T =

⎡⎢⎢⎢⎢⎢⎢⎣

22.4 11.2 12.4 46.0

18.1 13.0 10.8 41.9

28.4 12.1 9.9 50.4

19.7 14.1 11.5 45.3

88.6 50.4 44.6 183.6

⎤⎥⎥⎥⎥⎥⎥⎦
In matrix notation, we indicate that T was obtained by summing corresponding entries
of Q and P by writing

T = Q + P

In general, if A and B are m × n matrices, then A + B is the m × n matrix defned by
the formula

A + B = [aij] + [bij] = [aij + bij]
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4 SYSTEMS OF LINEAR EQUATIONS

For example

[
2 3 0

1 0 −1

]
+
[

1 2 1

0 5 1

]
=
[

3 5 1

1 5 0

]

Addition of matrices of different sizes is not defned.
What if, instead of totals for each division and each product, we wanted two-year

averages? We would simply multiply each entry of T = P + Q by 1
2
. The notation for

this is “ 1
2
T .” Specifcally,

1
2

T =

⎡⎢⎢⎢⎢⎢⎢⎣

11.20 05.60 06.20 23.00

09.05 06.50 05.40 20.95

14.20 06.05 04.95 25.20

09.85 07.05 05.75 22.65

44.30 25.20 22.30 91.80

⎤⎥⎥⎥⎥⎥⎥⎦
In general, if c is a number and A = [aij] is an m × n matrix, we defne

cA = c[aij] = [caij] = [aij]c = Ac (1.1)

Hence,

2

[
2 3 0

1 0 −1

]
=
[

4 6 0

2 0 −2

]
=
[

2 3 0

1 0 −1

]
2

There is also a notion of subtraction of m × n matrices. In general, if A and B are
m × n matrices, then we defne A − B to be the m × n matrix defned by the formula

A − B = [aij] − [bij] = [aij − bij]

Thus, [
3 5 1

1 5 0

]
−
[

1 2 1

0 5 1

]
=
[

2 3 0

1 0 −1

]

In linear algebra, the terms scalar and number mean essentially the same thing.
Thus, multiplying a matrix by a real number is often called scalar multiplication.

The Space R
n

We may think of a 2 × 1 column vector X =
[

x
y

]
as representing the point in the

plane with coordinates (x, y) as in Figure 1.1. We may also think of X as representing
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(x, y)

x

y

FIGURE 1.1 Coordinates in R
2.

x1+ x2x1x2

(x2, y2)

(x1, y1)

(x1 + x2, y1 + y2)

X

Y

X

cX

−cX

X + Y

FIGURE 1.2 Vector algebra.

the vector from the point (0, 0) to (x, y)—that is, as an arrow drawn from (0, 0) to
(x, y). We will usually denote the set of 2 × 1 matrices by R

2 when thought of as
points in two-dimensional space.

Like matrices, we can add pairs of vectors and multiply vectors by scalars. Specif-
ically, if X and Y are vectors with the same initial point, then X + Y is the diagonal
of the parallelogram with sides X and Y beginning at the same initial point (Figure
1.2, right). For a positive scalar c, cX is the vector with the same direction as that of
X, but with magnitude expanded (or contracted) by a factor of c.

Figure 1.2 on the left shows that when two elements of R
2 are added, the cor-

responding vectors add as well. Similarly, multiplication of an element of R
2 by a

scalar corresponds to multiplication of the corresponding vector by the same scalar.
If c < 0, the direction of the vector is reversed and the vector is then expanded or
contracted by a factor of −c (Figure 1.2, right).

�� EXAMPLE 1.1

Compute the sum of the vectors represented by

[
−1

2

]
and

[
2
3

]
and draw a diagram

illustrating your computation.
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6 SYSTEMS OF LINEAR EQUATIONS

(2, 3)

(–1, 2)

(1, 5)

21–1–2

1

2

3

4

5

FIGURE 1.3 Example 1.1.

Solution. The sum is computed as follows:

[−1

2

]
+
[

2

3

]
=
[−1 + 2

2 + 3

]
=
[

1

5

]

The vectors (along with their sum) are plotted in Figure 1.3.

Similarly, we may think of the 3 × 1 matrix

⎡⎢⎢⎢⎣
x

y

z

⎤⎥⎥⎥⎦
as representing either the point (x, y, z) in three-dimensional space or the vector from
(0, 0, 0) to (x, y, z) as in Figure 1.4. Matrix addition and scalar multiplication are
describable as vector addition just as in two dimensions. We will usually denote the
set of 3 × 1 matrices by R

3 when thought of as points in three-dimensional space.
What about n × 1 matrices? Even though we cannot visualize n dimensions, we

still envision n × 1 matrices as somehow representing points in n dimensional space.
The set of n × 1 matrices will be denoted as R

n when thought of in this way.

Definition 1.2 R
n is the set of all n × 1 matrices.

Linear Combinations and Linear Dependence

We can use our Acme Squidget proft matrices to demonstrate one of the most
important concepts in linear algebra. Consider the last column of the 2014 proft
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(x, y, z)

x

z

y

FIGURE 1.4 Coordinates in R
3.

matrix. Since this column represents the total proft for each branch, it is just the sum
of the other columns in the proft matrix:

⎡⎢⎢⎢⎢⎢⎢⎣

11.4

9.1

14.3

10.0

44.8

⎤⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎣

5.7

6.7

6.2

7.1

25.7

⎤⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎣

6.3

5.5

5.0

5.7

22.5

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

23.4

21.3

25.5

22.8

93.0

⎤⎥⎥⎥⎥⎥⎥⎦
(1.2)

This last column does not tell us anything we did not already know in that we
could have computed the sums ourselves. Thus, while it is useful to have the data
explicitly displayed, it is not essential. We say that this data is “dependent on” the
data in the other columns. Similarly, the last row of the proft matrix is dependent on
the other rows in that it is just their sum.

For another example of dependence, consider the two proft matrices Q and P and
their average

A = 1
2
(Q + P) = 1

2
Q + 1

2
P (1.3)

The matrix A depends on P and Q—once we know P and Q, we can compute A.
These examples exhibit an especially simple form of dependence. In each case,

the matrix we chose to consider as dependent was produced by multiplying the other
matrices by scalars and adding. This leads to the following concept.

Definition 1.3 Let S = {A1, A2,… , Ak} be a set of elements of M(m, n). An element
C of M(m, n) is linearly dependent on S if there are scalars bi such that

C = b1A1 + b2A2 +⋯ + bkAk (1.4)

We also say that “C is a linear combination of the Ai.”
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8 SYSTEMS OF LINEAR EQUATIONS

Remark. In set theory, an object that belongs to a certain set is called an element of
that set. The student must be careful not to confuse the terms “element” and “entry.”
The matrix below is one element of the set of 2 × 2 matrices. Every element of the
set of 2 × 2 matrices has four entries.[

1 2

4 −5

]

The expression “a ∈ B” means that a is an element of the set B.

One particular element of M(m, n) is linearly dependent on every other element of
M(m, n). This is the m × n matrix, which has all its entries equal to 0. We denote this
matrix by 0. It is referred to as “the zero element of M(m, n).” Thus, the zero element
of M(2, 3) is

0 =
[

0 0 0

0 0 0

]

The m × n zero matrix depends on every other m × n matrix because, for any m × n
matrix A,

0A = 0

We can also discuss linearly dependent sets of matrices.

Definition 1.4 Let S = {A1, A2,… , Ak} be a set of elements of M(m, n). Then S
is linearly dependent if at least one of the Aj is a linear combination of the other
elements of S—that is, Aj is a linear combination of the set of elements Ai with i ≠ j.
We also define the set {0}, where 0 is the zero element of M(m, n), to be linearly
dependent. S is said to be linearly independent if it is not linearly dependent. Hence,
S is linearly independent if none of the Ai are linear combinations of other elements
of S.

Thus, from formula (1.3), the set S = {P, Q, A} is linearly dependent. In addition,
from formula (1.2), the set of columns of P is linearly dependent. The set of rows of
P is also linearly dependent since the last row is the sum of the other rows.

�� EXAMPLE 1.2

Is S = {A1, A2, A3, A4} a linearly independent set where the Ai are the following 2 × 2
matrices?

A1 =
[

0 −1

1 1

]
, A2 =

[
3 5

0 1

]
, A3 =

[
1 2

0 0

]
, A4 =

[
1 1

0 1

]
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Solution. By inspection

A2 = 2A3 + A4 = 0A1 + 2A3 + A4

showing that S is linearly dependent.

Remark. Note that A1 is not a combination of the other Ai since the (2, 1) entry of
A1 is nonzero, while all the other Ai are zero in this position. This demonstrates that
linear dependence does not require that each of the Ai be a combination of the others.

�� EXAMPLE 1.3

Let B1, B2, and B3 be as shown. Is S = {B1, B2, B3} a linearly dependent set?

B1 =

⎡⎢⎢⎢⎢⎣

2

0

0

1

⎤⎥⎥⎥⎥⎦
, B2 =

⎡⎢⎢⎢⎢⎣

−7

2

0

0

⎤⎥⎥⎥⎥⎦
, B3 =

⎡⎢⎢⎢⎢⎣

1.3

0

2.2

0

⎤⎥⎥⎥⎥⎦
Solution. We begin by asking ourselves whether B1 is linearly dependent on B2 and
B3—that is, are there scalars a and b such that

B1 = aB2 + bB3

The answer is no since the last entries of both B2 and B3 are 0, while the last entry of
B1 is 1.

Similarly, we see that B2 is not a linear combination of B1 and B3 (from the second
entries) and B3 is not a linear combination of B1 and B2 (from the third entries). Thus,
the given three matrices form a linearly independent set.

Example 1.3 is an example of the following general principle that we use several
times later in the text.

Proposition 1.1 Suppose that S = {A1, A2,… , Ap} is a set of m × n matrices such
that each Ak has a nonzero entry in a position where all the other Aq are zero—that
is, for each k there is a pair of indices (i, j) such that (Ak)ij ≠ 0 while (Aq)ij = 0 for
all q ≠ k. Then S is linearly independent.

Proof. Suppose that S is linearly dependent. Then there is a k such that

Ak = c1A1 + c2A2 +⋯ + ck−1Ak−1 + ck+1Ak+1 +⋯ + cqAq
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10 SYSTEMS OF LINEAR EQUATIONS

Let (i, j) be as described in the statement of the proposition. Equating the (i, j) entries
on both sides of the above equation shows that

(Ak)ij = c10 + c20 +⋯ + ck−10 + ck+10 +⋯ + cq0 = 0

contradicting the hypothesis that (Ak)ij ≠ 0.

Linear independence also has geometric signifcance. Two vectors X and Y in R
2

will be linearly independent if and only if neither is a scalar multiple of the other—
that is, they are noncollinear (Figure 1.5, left). We will prove in Section 2.2 that any
three vectors X, Y , and Z in R

2 are linearly dependent (Figure 1.5, right).
In R

3, the set of linear combinations of a pair of linearly independent vectors
lies in the plane they determine. Thus, three noncoplanar vectors will be linearly
independent (Figure 1.6).

In general, the set of all matrices that depends on a given set of matrices is called
the span of the set:

X

Y

IndependentDependent

Y

X

Z

X

Y

aX

bY

Dependent

FIGURE 1.5 Dependence in R
2.

3 Noncoplanar Vectors
Are Independent!

O O

3 Coplanar Vectors
Are Dependent!

X

Y Z

X

Y

Z

FIGURE 1.6 Three vectors in R
3.
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Definition 1.5 Let S = {A1, A2,… , Ak} be a set of elements of M(m, n). Then span S
(the span of S) is the set of all elements of the form

B = c1A1 + c2A2 +⋯ + ckAk

where the ci are scalars.

The span of S, then, is just the set of all linear combinations of the elements of S.
Thus, for example, if B1, B2, and B3 are as in Example 1.3 on page 9, then

B1 + B2 + 10B3 =

⎡⎢⎢⎢⎢⎣

8

2

22

1

⎤⎥⎥⎥⎥⎦
is one element of span {B1, B2, B3}.

In R
2 and R

3, the span of a single vector is the line through the origin determined
by it. From Figure 1.6, the span of a set of two linearly independent vectors will be
the plane they determine.

What Is a Vector Space?

One of the advantages of matrix notation is that it allows us to treat a matrix as if
it were one single number. For example, we may solve for Q in formula (1.3) on
page 7:

A = 1
2
(P + Q)

2A = Q + P

2A − P = Q

The preceding calculations used a large number of properties of matrix arithmetic
that we have not discussed. In greater detail, our argument was as follows:

A = 1
2
(P + Q)

2A = 2[ 1
2
(P + Q)] = 2

2
(Q + P) = Q + P

2A + (−P) = (Q + P) + (−P)

= Q + (P − P) = Q + 0 = Q

We certainly used the associative law (A + B) + C = A + (B + C), the laws A +
(−A) = 0 and A + 0 = A, as well as several other laws. In Theorem 1.1, we list the
most important algebraic properties of matrix addition and scalar multiplication.
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12 SYSTEMS OF LINEAR EQUATIONS

These properties are called the vector space properties. Experience has proved
that these properties are all that one needs to effectively deal with any computations
such as those just done with A, P, and Q. For the sake of this list, we let  = M(m, n)
for some fxed m and n.1 Thus, for example,  might be the set of all 2 × 3 matrices.

Theorem 1.1 (The Vector Space Properties). Let X, Y, and Z be elements of  .
Then:

(a) X + Y is a well-defined element of  .

(b) X + Y = Y + X (commutativity).

(c) X + (Y + Z) = (X + Y) + Z (associativity).

(d) There is an element denoted 0 in  such that X + 0 = X for all X ∈  . This
element is referred to as the “zero element.”

(e) For each X ∈  , there is an element −X ∈  such that X + (−X) = 0.

Additionally, for all scalars k and l:

(f) kX is a well-defined element of  .

(g) k(lX) = (kl)X.

(h) k(X + Y) = kX + kY.

(i) (k + l)X = kX + lX.

(j) 1X = X.

The proofs that the properties from this list hold for  = M(m, n) are left as
exercises for the reader. However, let us prove property (c) as an example of how
such a proof should be written.

�� EXAMPLE 1.4

Prove property (c) for M(m, n).

Solution. Let X = [xij], Y = [yij], and Z = [zij] be elements of M(m, n). Then

X + (Y + Z) = [xij] + ([yij + zij])

= [xij + (yij + zij)]

= [(xij + yij) + zij] (from the associative law for numbers)

= ([xij + yij]) + [zij] = (X + Y) + Z

1We use  in order to avoid the necessity of re-listing these properties when we defne the general notion
of “vector space.”
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THE VECTOR SPACE OF m × n MATRICES 13

When we introduced linear independence, we mentioned that for any m × n matrix
A

0A = 0

This is very simple to prove:

0A = 0[aij] = [0aij] = 0

This proof explicitly uses the fact that we are dealing with matrices. It is possible
to give another proof that uses only the vector space properties. We frst note from
property (i) that

0A + 0A = (0 + 0)A = 0A

Next, we cancel 0A from both sides using the vector space properties:

−0A + (0A + 0A) = −0A + 0A

(−0A + 0A) + 0A = 0

0 + 0A = 0

0A = 0

Property (e)

Property (c)

Properties (b) and (e)

Properties (b) and (d)

(1.5)

Both proofs are valid for matrices. We, however, prefer the second. Since it used
only the vector space properties, it will be valid in any context in which these
properties hold. For example, let  (R) denote the set of all real-valued functions
which are defned for all real numbers. Thus, the functions y = ex and y = x2 are two
elements of  (R). We defne addition and scalar multiplication for functions by the
formulas

(f + g)(x) = f (x) + g(x)
(cf )(x) = cf (x)

(1.6)

Thus, for example,

y = 3ex − 7x2

defnes an element of  (R). Since addition and scalar multiplication of functions are
defned using the corresponding operations on numbers, it is easily proved that the
vector space properties (a)–(j) hold if we interpret A, B, and C as functions rather
than matrices. (See Example 1.5.)

Thus, we can automatically state that 0f (x) = 0, where f (x) represents any function
and 0 is the zero function. Admittedly, this is not an exciting result. (Neither, for that
matter, is 0A = 0 for matrices.) However, it demonstrates an extremely important
principle: Anything we prove about matrices using only the vector space properties
will be true in any context for which these properties hold.
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14 SYSTEMS OF LINEAR EQUATIONS

As we progress in our study of linear algebra, it will be important to keep track
of exactly which facts can be proved directly from the vector space properties and
which require additional structure. We do this with the concept of “vector space.”

Definition 1.6 A set  is a vector space if it has a rule of addition and a rule of
scalar multiplication defined on it so that all the vector space properties (a)–(j) from
Theorem 1.1 hold. By a rule of addition we mean a well-defined process for taking
an arbitrary pair of elements X and Y from  and producing a third element X + Y
in  . (Note that the sum must lie in  .) By a rule of scalar multiplication we mean
a well-defined process for taking an arbitrary scalar c and an arbitrary element X of
 and producing a second element cX of  .

The following theorem summarizes our discussion of functions. We leave most of
the proof as an exercise.

Theorem 1.2 The set  (R) of real valued functions on R is a vector space under
the operations defined by formula (1.6).

�� EXAMPLE 1.5

Prove vector space property (h) for  (R).

Solution. Let f (x) and g(x) be real-valued functions and let k ∈ R. Then

(k(f + g))(x) = k((f + g)(x))

= k(f (x) + g(x))

= kf (x) + kg(x)

= (kf + kg)(x)

showing that k(f + g) = kf + kg, as desired.

Any concept defned for M(m, n) solely in terms of addition and scalar multiplication
will be meaningful in any vector space  . One simply replaces M(m, n) by  where
 is a general vector space. Specifcally:

(a) The concept an element C in  depending on a set S = {A1, A2,… , Ak} of
elements of  is defined as in Definition 1.3.

(b) The concepts of linear independence/dependence for a set S =
{A1, A2,… , Ak} of elements of  are defined as in Definition 1.4.

(c) The concept of the span of a set S = {A1, A2,… , Ak} of elements of  is
defined as in Definition 1.5.

�� EXAMPLE 1.6

Show that the set of functions {sin2 x, cos2 x, 1} is linearly dependent in  (R).
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Solution. This is clear from the formula

sin2 x + cos2 x = 1

Theorem 1.1 states that for each m and n, M(m, n) is a vector space. The set of all
possible matrices is not a vector space, at least under the usual rules of addition and
scalar multiplication. This is because we cannot add matrices unless they are the
same size: for example, we cannot add a 2 × 2 matrix to a 2 × 3 matrix. Thus, our
“rule of addition” is not valid for all matrices.

At the moment, the M(m, n) spaces, along with  (R), are the only vector spaces
we know. This will change in Section 1.5 where we describe the concept of “subspace
of a vector space.” However, if we say that something is “true for all vector spaces,”
we are implicitly stating that it can be proved solely on the basis of the vector
space properties. Thus, the property that 0A = 0 is true for all vector spaces. Another
important vector space property is the following. The proof (which must use only the
vector space properties or their consequences) is left as an exercise.

Proposition 1.2 Let X be an element of a vector space  . Then (−1)X = −X.

Before ending this section, we need to make a comment concerning notation.
Writing column vectors takes considerable text space. There is a handy space-saving
notation that we shall use often. Let A be an m × n matrix. The “main diagonal” of
A refers to the entries of the form aii. (Note that all these entries lie on a diagonal
line starting at the upper left-hand corner of A.) If we fip A along its main diagonal,
we obtain an n × m matrix, which is denoted At and called the transpose of A.
Mathematically, At is the n × m matrix [bij] defned by the formula

bij = aji

Thus if

A =
[

1 2 3

4 5 6

]
, then At =

⎡⎢⎢⎢⎣
1 4

2 5

3 6

⎤⎥⎥⎥⎦
Notice that the columns of A become rows in At. Thus, [2, 3,−4, 10]t is a space
effcient way of writing the column vector

⎡⎢⎢⎢⎢⎣

2

3

−4

10

⎤⎥⎥⎥⎥⎦
Remark. The reader will discover in later sections that the transpose of a matrix has
importance far beyond typographical convenience.
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16 SYSTEMS OF LINEAR EQUATIONS

Why Prove Anything?

There is a fundamental difference between mathematics and science. Science is
founded on experimentation. If certain principles (such as Newton’s laws of motion)
seem to be valid every time experiments are done to verify them, they are accepted
as a “law.”

They will remain a law only as long as they agree with experimental evidence.
Thus, Newton’s laws were eventually replaced by the theory of relativity when they
were found to confict with the experiments of Michelson and Morley. Mathematics,
on the other hand, is based on proof. No matter how many times some mathematical
principle is observed to hold, we will not accept it as a “theorem” until we can produce
a logical argument that shows the principle can never be violated.

One reason for this insistence on proof is the wide applicability of mathematics.
Linear algebra, for example, is essential to a staggering array of disciplines including
(to mention just a few) engineering (all types), biology, physics, chemistry, eco-
nomics, social sciences, forestry, and environmental science. We must be certain that
our “laws” hold, regardless of the context in which they are applied. Beyond this,
however, proofs also serve as explanations of why our laws are true. We cannot say
that we truly understand some mathematical principle until we can prove it.

Mastery of linear algebra, of course, requires that the student learn a body of
computational techniques. Beyond this, however, the student should read and, most
important, understand the proofs. The student will also be asked to create his or her
own proofs. This is because it cannot be truly said that we understand something until
we can explain it to someone else.

In writing a proof, the student should always bear in mind that proofs are com-
munication. One should envision the “audience” as another student who wants to
be convinced of the validity of what is being proved. This other student will ques-
tion anything that is not a simple consequence of something that he or she already
understands.

True-False Questions: Justify your answers.

1.1 A subset of a linearly independent set is linearly independent.

1.2 A subset of a linearly dependent set is linearly dependent.

1.3 A set that contains a linearly independent set is linearly independent.

1.4 A set that contains a linearly dependent set is linearly dependent.

1.5 If a set of elements of a vector space is linearly dependent, then each element
of the set is a linear combination of the other elements of the set.

1.6 A set of vectors that contains the zero vector is linearly dependent.

1.7 If X is in the span of A1, A2, and A3, then the set {X, A1, A2, A3} is linearly
independent as long as the Ai are independent.

1.8 If {X, A1, A2, A3} is linearly dependent then X is in the span of A1, A2, and A3.

1.9 The following set of vectors is linearly independent:

[1, 0, 1, 1, 0]t, [0, 1, 0, 2, 0]t, [2, 0, 0, 3, 4]t
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EXERCISES 17

1.10 The following matrices form a linearly independent set:

⎡⎢⎢⎢⎣
2 1

3 1

1 1

⎤⎥⎥⎥⎦
,

⎡⎢⎢⎢⎣
1 2

3 −1

2 2

⎤⎥⎥⎥⎦
,

⎡⎢⎢⎢⎣
4 5

9 −1

5 5

⎤⎥⎥⎥⎦
1.11 If {A1, A2, A3} is a linearly dependent set of matrices, then {At

1, At
2, At

3} is also
a linearly dependent set.

1.12 The set of functions {tan2 x, sec2 x, 1} is a linearly independent set of elements
of the vector space of all continuous functions on the interval (−𝜋∕2,𝜋∕2).

EXERCISES

A check mark ✓next to an exercise indicates that there is an answer/solution provided
in the Student Resource Manual. A double check mark ✓✓indicates that there is also
an answer/hint provided in the Answers and Hints section at the back of the text.

1.1 In each case, explicitly write out the matrix A, where A = [aij]. Also, give the
third row (written as a row vector) and the second column (written as a column
vector).

(a) ✓✓ aij = 2i − 3j, where 1 ≤ i ≤ 3 and 1 ≤ j ≤ 4

(b) ✓ aij = i2j3, where 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2

(c) ✓✓ aij = cos(ij𝜋∕3), where 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2

1.2 For the matrices A, B, and C below, compute (in the order indicated by the
parentheses) (A + B) + C and A + (B + C) to illustrate that (A + B) + C = A +
(B + C). Also illustrate the distributive law by computing 3(A + B) and 3A +
3B.

A =

⎡⎢⎢⎢⎢⎣

1 1 2

0 1 −2

2 0 1

3 2 1

⎤⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎣

2 0 1

4 1 0

2 3 2

−1 2 −2

⎤⎥⎥⎥⎥⎦
, C =

⎡⎢⎢⎢⎢⎣

3 1 3

4 2 −2

4 3 3

2 4 −1

⎤⎥⎥⎥⎥⎦
1.3 ✓✓The set of matrices {A, B, C} from Exercise 1.2 is linearly dependent.

Express one element of this set as a linear combination of the others. You
should be able to solve this by inspection (guessing).

1.4 Let A, B, and C be as in Exercise 1.2. Give a fourth matrix D (reader’s choice)
that belongs to the span of these matrices.

1.5 Each of the following sets of matrices is linearly dependent. Demonstrate
this by explicitly exhibiting one of the elements of the set as a linear
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18 SYSTEMS OF LINEAR EQUATIONS

combination of the others. You should be able to fnd the constants by inspec-
tion (guessing).

(a) ✓✓ {[1, 1, 2], [0, 0, 1], [1, 1, 4]}

(b) {[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 2, 3]}

(c) ✓✓
{[

0 0

1 0

]
,

[
1 2

0 0

]
,

[
1 0

0 0

]
,

[
0 1

0 0

]}

(d) ✓✓

⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎣

1

2

3

⎤⎥⎥⎥⎦
,

⎡⎢⎢⎢⎣
4

5

6

⎤⎥⎥⎥⎦
,

⎡⎢⎢⎢⎣
3

3

3

⎤⎥⎥⎥⎦
,

⎡⎢⎢⎢⎣
9

12

15

⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭

(e)
{[

1 0

0 0

]
,

[
0 1

0 0

]
,

[
0 0

1 0

]
,

[
0 0

0 1

]
,

[
2 1

3 −4

]}

(f) ✓
{[

3 −1 2

0 1 4

]
,

[−9 3 −6

0 −3 −12

]}

(g)
{[

1 1

2 3

]
,

[
1 1

0 1

]
,

[
1 2

0 0

]
,

[
0 −1

0 1

]}
1.6 ✓✓Write the second row of the Acme proft matrix P (Table (1.1) on page 2)

as a linear combination of the other rows.

1.7 Write the frst column of the Acme proft matrix P (Table (1.1) on page 2) as
a linear combination of the other columns.

1.8 Verify the Remark following Example 1.2 on page 8, that is, show that A1 is
not a linear combination of A2, A3, and A4.

1.9 ✓✓What general feature of the following matrices makes it clear that they are
independent?

⎡⎢⎢⎢⎢⎣

1

0

3

0

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

0

0

−5

1

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

0

1

13

0

⎤⎥⎥⎥⎥⎦
1.10 ✓Prove that the rows of the following matrix are linearly independent. [Hint:

Assume A3 = xA1 + yA2, where Ai is the ith row of A. Prove frst that x = 0 and
then show y = 0, which is impossible. Repeat for the other rows. [In Section
2.1 we discuss a more effcient way of solving such problems.]

A =
⎡⎢⎢⎢⎣

1 2 3

0 5 6

0 0 8

⎤⎥⎥⎥⎦�
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EXERCISES 19

1.11 Prove that the columns of the matrix in Exercise 1.10 are linearly independent.
[Hint: See the hint for Exercise 1.10.]

1.12 Let X = [1,−1, 0] and Y = [1, 0, 0]. Give four row vectors (reader’s choice)
that belong to the span of X and Y . Give an element of M(1, 3) that does not
belong to the span of X and Y .

1.13 ✓✓Let X = [−1, 1,−1] and Y = [−1, 3, 2].

(a) Find an element in the span of X and Y such that each of its entries is
positive.

(b) Show that every element [x, y, z] of the span of X and Y satisfes 5x +
3y − 2z = 0.

(c) Give an element of M(1, 3) that does not belong to the span of X and Y .

1.14 Find two elements of R
4 which belong to the span of the following vectors.

Find an element of R
4 which does not belong to their span. [Hint: Compute

the sum of the entries of each of the given vectors.]

X1 = [1, 1,−1,−1]t, X2 = [2,−1,−3, 2]t, X3 = [1, 3,−2,−2]t

1.15 Find an element in the span of the vectors X = [−1, 2, 1]t and Y = [2, 5, 1]t

which has its third entry equal to 0 and its other two entries positive.

1.16 ✓Let X = [1,−1, 0]t and Y = [1, 0,−1]t. Are there any elements in their span
with all entries positive? Explain.

1.17 Let X = [1,−2, 4]t and Y = [−1, 2, 3]t. Are there any elements in their span
with all entries positive? Explain.

1.18 Let X =
[

2 3
1 4

]
and Y =

[
−2 −3

4 −1

]
. Are there any elements in their span in

the vector space M(2, 2) with all entries positive? Explain.

1.19 For each of the following sets of functions either fnd a function f (x) in their
span such that f (x) > 0 for all x or prove that no such function exists.

(a) {sin x, 1} (b) {cos x, 1}

(c) ✓ {sin x, cos x}

1.20 The xy plane in R
3 is the set of elements of the form [x, y, 0]t. Find a nonzero

element of the xy plane that belongs to the span of the vectors X and Y from
(a) Exercise 1.16 and (b) Exercise 1.17. (c)✓Find two nonzero vectors X and
Y in R

3, X ≠ Y , for which there are NO nonzero vectors Z in the xy plane that
also belong to the span of X and Y .

1.21 Let X = [x1, y1, z1] and Y = [x2, y2, z2] be elements of M(1, 3). Suppose that a,
b, and c are such that axi + byi + czi = 0 for i = 1, 2. Show that every element
[x, y, z]t of the span of X and Y satisfes ax + by + cz = 0.
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20 SYSTEMS OF LINEAR EQUATIONS

1.22 In Exercise 1.16, fnd constants a, b, c, not all zero, such that every element
[x, y, z] of the span of X and Y satisfes the equation ax + by + cz = 0. Repeat
for Exercise 1.17. Explain geometrically why such constants should exist.
[Hint: The equation ax + by + cz = 0 describes a plane through 0, as long as
at least one of a, b, and c is nonzero.]

1.23 ✓✓Let X, Y , and Z be as shown. Give four matrices (reader’s choice) that
belong to their span. Give a matrix that does not belong to their span.

X =
[

1 2

0 3

]
, Y =

[
2 −1

0 0

]
, Z =

[
1 1

0 1

]

1.24 In the following questions we investigate geometric signifcance of spanning
and linear independence.

(a) Sketch the span of [1, 2]t in R
2.

(b) What do you guess that the span of {[1, 2]t, [1, 1]t} in R
2 is? Draw a

diagram to support your guess.

(c) Do you think that it is possible to fnd three linearly independent matrices
in M(2, 1)?

(d) On the basis of your answer to (c), do you think that it is possible to
construct a 2 × 3 matrix with linearly independent columns? How about
a 3 × 2 matrix with linearly independent rows?

(e) Sketch (as best you can) the span of {[1, 1, 0]t, [0, 0, 1]t} in R
3.

(f) How does the span of {[1, 1, 1]t, [1, 1, 0]t} in R
3 compare with that in

part (e)?

(g) Sketch the span of {[1, 1, 1]t, [2, 2, 2]t} in R
3. Why is this picture so

different from that in part (f)? Bring the phrase “ linearly dependent” into
your discussion.

1.25 ✓✓Suppose that V and W both belong to the span of X and Y in some vector
space. Show that all linear combinations of V and W also belong to this span.

1.26 ✓✓The columns of the following matrix A are linearly dependent. Exhibit one
column as a linear combination of the other columns.

⎡⎢⎢⎢⎣
6 6 4

1 2 1

2 1 1

⎤⎥⎥⎥⎦
1.27 Let A be as in Exercise 1.26. Exhibit one row of A as a linear combination of

the other rows.

1.28 Is it possible to fnd a 2 × 2 matrix whose rows are linearly dependent but
whose columns are linearly independent? Prove your answer.
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1.29 ✓✓Construct an example of your own choice of a 4 × 4 matrix with linearly
dependent rows having all of its entries nonzero.

1.30 Construct an example of your own choice of a 4 × 4 matrix with linearly
dependent columns having all of its entries nonzero.

1.31 ✓Let S = {A, B, C, D} be some set of four elements of some vector space.
Suppose that D = 2A + B + 3C and C = A − B. (a) Is {A, B, D} linearly depen-
dent? Explain. (b) Is {A, C, D} linearly dependent? (c) What can you conclude
(if anything) about the linear dependence of {A, B}?

1.32 Let S = {A, B, C, D} be some set of four elements of some vector space. Sup-
pose that A = B − 3C + D and C = A − B. (a) Is {A, B, D} linearly dependent?
Explain. (b) Is {A, C, D} linearly dependent? (c) What can you conclude (if
anything) about the linear dependence of {A, C}?

1.33 The following sets of functions are linearly dependent in  (R). Show this
by expressing one of them as a linear combination of the others. (You may
need to look up the defnitions of the sinh and cosh functions as well as some
trigonometric identities in a calculus book.)

(a) {3 sin2 x,−5 cos2 x, 119} (b) ✓✓ {2ex, 3e−x, sinh x}
(c) {sinh x, cosh x, e−x} (d) ✓✓ {cos(2x), sin2 x, cos2 x}
(e) {cos(2x), 1, cos2 x} (f) ✓✓ {(x + 3)2, 1, x, x2}
(g) {x2 + 3x + 3, x + 1, 2x2} (h) ✓✓ {sin x, sin(x + 𝜋

4
),

cos(x + 𝜋

4
)}

(i) ✓✓ {ln [(x2 + 1)3∕(x4 + 7)], ln
√

x2 + 1, ln(x4 + 7)}

1.34 ✓Give two examples of functions in the span of the functions {1, x, x2}.
Describe in words what the span of these three functions is. [Some useful ter-
minology: the function p(x) = a0 + a1x +⋯ + anxn is a polynomial of degree
less than or equal to n. Its degree equals n if an ≠ 0.]

1.35 Repeat Exercise 1.34 for the polynomials {1, x, x2, x3}.

1.36 ✓✓Let

A =
[

a b

c d

]
(a) Use the defnition of matrix addition to prove that the only 2 × 2 matrix

B such that A + B = A is the zero matrix. The point of this problem is
that one should think of A + 0 = A as the defning property of the zero
matrix.

(b) Use the defnition of matrix addition to prove that the only 2 × 2 matrix
B such that A + B = 0 is

B =
[−a −b

−c −d

]
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22 SYSTEMS OF LINEAR EQUATIONS

The point of this problem is that one should think of A + (−A) = 0 as the
defning property of −A.

1.37 Prove vector space properties (b), (e), (g), (h), and (i)✓for M(m, n).

1.38 Let B, C, and X be elements of some vector space. In the following discussion,
we solved the equation 3X + B = C for X. At each step we used one of the
vector space properties. Which property was used? [Note: We defne C − B =
C + (−B).]

3X + B = C

(3X + B) + (−B) = C + (−B) Properties (a) and (e)

3X + (B + (−B)) = C − B Defnition of C − B and property (?)

3X + 0 = C − B Property (?)

3X = C − B Property (?)
1
3

(3X) = 1
3

(C − B) Property (?)(1
3

3
)

X = 1
3

(C − B) Property (?)

1X = 1
3

(C − B)

X = 1
3

(C − B) Property (?)

1.39 Let X and Y be elements of some vector space. Prove, putting in every step,
that −(2X + 3Y) = (−2)X + (−3)Y . You may fnd Proposition 1.2 useful.

1.40 ✓✓Let X, Y , and Z be elements of some vector space. Suppose that there are
scalars a, b, and c such that aX + bY + cZ = 0. Show that if a ≠ 0, then

X =
(
−b

a

)
Y +

(
− c

a

)
Z

Do your proof in a step-by-step manner to demonstrate the use of each vector
space property needed. [Note: In a vector space, X + Y + Z denotes X + (Y +
Z).]

1.41 Prove that in any vector space, if X + Y = 0, then Y = −X. (Begin by adding
−X to both sides of the given equality.)

1.42 Prove Proposition 1.2. [Hint: From Exercise 1.41, it suffces to prove that
X + (−1)X = 0.]

1.1.1 Computer Projects

Our goal in this discussion is to plot some elements of the span of the vectors
A = [1, 1] and B = [2, 3] using MATLAB. Before we begin, however, let us make a
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few general comments. When you start up MATLAB, you will see something like >>
followed by a blank line. If the instructions ask you to enter 2 + 2, then you should
type 2 + 2 on the screen behind the >> prompt and then press the enter key. Try it!

>> 2+2
ans =

4

Entering matrices into MATLAB is not much more complicated. Matrices begin
with “[” and end with “]”. Entries in rows are separated with either commas or spaces.
Thus, after starting MATLAB, our matrices A and B would be entered as shown. Note
that MATLAB repeats our matrix, indicating that it has understood us.

>> A = [1 1]
A =

1 1
>> B = [1 3]
B =

1 3

Next we construct a few elements of the span of A and B. If we enter “2∗A+B”,
MATLAB responds

ans =
3 5

(Note that ∗ is the symbol for “times.” MATLAB will complain if you simply
write 2A+B.)

If we enter (−5) ∗A +7 ∗B, MATLAB responds

ans =
2 16

Thus, the vectors [3, 5] and [2, 16] both belong to the span.
We can get MATLAB to automatically generate elements of the span. Try enter-

ing the word “rand”. This should cause MATLAB to produce a random number
between 0 and 1. Enter “rand” again. You should get a different random number.
It follows that entering the command C=rand∗A+rand∗B should produce random
linear combinations of A and B. Try it!

To see more random linear combinations of these vectors, push the up-arrow
key. This should return you to the previous line. Now you can simply hit “enter”
to produce a new random linear combination. By repeating this process, you can
produce as many random elements of the span as you wish.

Next, we will plot our linear combinations. Begin by entering the following lines.
Here “fgure” creates a fgure window, “hold on” tells MATLAB to plot all points on
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24 SYSTEMS OF LINEAR EQUATIONS

the same graph, and “axis([-5,5,-5,5])” tells MATLAB to show the range −5 ≤ x ≤ 5
and −5 ≤ y ≤ 5 on the axes. The command “hold on” will remain in effect until we
enter “hold off”:

>> figure
>> hold on
>> axis([-5,5,-5,5])

A window (the Figure window) showing a blank graph should pop up.
Points are plotted in MATLAB using the command “plot.” For example, entering

plot(3,4) will plot the point (3, 4). Return to the MATLAB Command window and
try plotting a few points of your own choosing. (To see your points, you will either
need to return to the Figure window or move and resize the Command and Figure
windows so that you can see them both at the same time. Moving between windows
is accomplished by pulling down the Window menu.) When you are fnished, clear
the fgure window by entering “cla” and then enter the following line:

C=rand*A+rand*B plot(C(1),C(2))

This will plot one point in the span. [ C(1) is the frst entry of C and C(2) is
the second.] You can plot as many points as you wish by using the up-arrow key as
before.

EXERCISES

1. Plot the points [1, 1], [1,−1], [−1, 1], and [−1,−1] all on the same fgure. When
fnished, clear the fgure window by entering the “cla” command.

2. Enter the vectors A and B from the discussion above.

(a) Get MATLAB to compute several different linear combinations of them.
(Reader’s choice.)

(b) Use C=rand*A+rand*B to create several “random” linear combinations of
A and B.

(c) Plot enough points in the span of A and B to obtain a discernible geometric
fgure. Be patient. This may require plotting over 100 points. What kind
of geometric fgure do they seem to form? What are the coordinates of the
vertices?

Note: If your patience runs thin, you might try entering the following three
lines. The “;” keeps MATLAB from echoing the command every time it is
being executed.

for i=1:200
C=rand*A+rand*B; plot(C(1),C(2));

end

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

� � � � � � � � � � � � � � �
�

� � � � � � � � � � �
�



EXERCISES 25

This causes MATLAB to execute any commands between the “for” and
“end” statements 200 times.

(d) The plot in part (c) is only part of the span. To see more of the span, enter
the commands

for i=1:200

C=2*rand*A+rand*B; plot(C(1),C(2),’r’);

end

The “r” in the plot command tells MATLAB to plot in red.

3. Describe in words the set of points s∗A + t∗B for −2 ≤ s ≤ 2 and −2 ≤ t ≤ 2.
Create a MATLAB plot that shows this set reasonably well. Use yet another color.
(Enter “help plot” to see the choice of colors.) [Hint: “rand” produces random
numbers between 0 and 1. What would “rand-0.5” produce?]

4. In Exercise 1.13 on page 19, it was stated that each element of the span of X and
Y satisfes 5x + 3y − 2z = 0.

(a) Check this by generating a random matrix C in the span of X and Y and
computing 5∗C(1)+3*C(2)-2*C(3). Repeat with another random element
of the span.

(b) Plot a few hundred elements of this span in R
3. Before doing so, close

the Figure window by selecting Close from the File menu. Next, enter
“fgure”, then “axis([-4,4,-4,4,-4,4])”, and “hold on”. A three-dimensional
graph should pop up. The command plot3(C(1),C(2),C(3)) plots the three-
dimensional vector C.

Describe the geometric fgure so obtained. What are the coordinates of
the vertices? Why is this to be expected?

1.1.2 Applications to Graph Theory I

Figure 1.7 represents the route map of an airline that serves four cities, A, B, C, and
D. Each arrow represents a daily fight between the two cities.

The information from this diagram can be represented in tabular form, where the
numbers represent the number of daily fights between the cities:

from/to A B C D

A 0 1 0 1

B 1 0 0 1

C 0 1 0 1

D 1 0 2 0
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26 SYSTEMS OF LINEAR EQUATIONS

A
B

D

C

FIGURE 1.7 Route map.

The 4 × 4 matrix obtained by deleting the labels from the preceding table is what
we refer to as the route matrix. The route matrix could be stored in a computer. One
could then, for example, use this information as the basis for a computer program to
fnd the shortest connection for a customer.

Route maps are examples of what are calleddirected graphs. In general, a directed
graph is a fnite set of points (called vertices), together with arrows connecting
some of the vertices. A directed graph may be described using a matrix just as
was done for route maps. Specifcally, if the vertices are V1, V2,… , Vn, then the
graph will be represented by the matrix A, where aij is the number of arrows from
Vi to Vj.

Graph theory may also be applied to anthropology. Suppose an anthropologist
is studying generational dominance in an extended family. The family members
are M (mother), F (father), S1 (frst born son), S2 (second born son), D1 (frst
born daughter), D2 (second born daughter), MGM (maternal grandmother), MGF
(maternal grandfather), PGM (paternal grandmother), and PGF (paternal grandfa-
ther). The anthropologist represents the dominance relationships by a directed graph
where an arrow is drawn from each individual to any individual he or she directly
dominates. In the exercises you will study the dominance relationship given in
Figure 1.8.

We will say more about the matrix of a graph in Section 3.2.

MGFMGM PGM PGF

MF

S1 S2 D1 D2

FIGURE 1.8 Dominance in an extended family.
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A
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A
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C

D

(a) (b) (c)

FIGURE 1.9 Exercise 1.

Self-Study Questions

1.1 ✓Give the route matrix for each of the route maps in Figure 1.9 where the nodes
are listed in alphabetical order.

1.2 ✓For each of the following matrices, draw a route map that could correspond
to the given matrix:

(a)

⎡⎢⎢⎢⎣
0 1 1

1 0 0

0 1 0

⎤⎥⎥⎥⎦
(b)

⎡⎢⎢⎢⎢⎣

0 1 0 1

1 0 0 1

1 1 0 0

0 1 1 0

⎤⎥⎥⎥⎥⎦
1.3 ✓Why are entries on the diagonal in a route matrix always zero?

EXERCISES

1.43 Under what circumstances does a route matrix A satisfy A = At?

1.44 What would be the signifcance for the route if all the entries in a given column
were zero? What if a given row were zero? What if a row and a column were
zero?

1.45 ✓Give the dominance matrix (the matrix for the graph) for the dominance
relationship described by Figure 1.8.

1.46 Suppose that A is the matrix of a dominance relationship. Explain why aijaji =
0.

1.47 ✓We say that two points A and B of a directed graph are two-step connected if
there is a point C such that A → C → B. Thus, for example, in the route map
in Figure 1.7, A and C are two-step connected, but D and C are not. Also A
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28 SYSTEMS OF LINEAR EQUATIONS

A

CB

D

E

FIGURE 1.10 Exercise 1.48.

is two-step connected with itself. Give the two-step route matrix for the route
map in Figure 1.7.

1.48 Figure 1.10 shows the end-of-season results from an athletic conference with
teams A–D can be described using a graph. The arrows indicate which team
beat which.

1. Find the matrix A for the graph in Figure 1.10.

2. Compute the win–loss record of team C.

1.2 SYSTEMS

An equation in variables x1, x2,… , xn is a linear equation if and only if it is
expressible in the form

a1x1 + a2x2 +⋯ + anxn = b (1.7)

where ai and b are all scalars. By a solution to equation (1.7) we mean a column
vector [x1, x2,… , xn]t of values for the variables that make the equation valid. Thus,
X = [1, 2,−1]t is a solution of the equation

2x + 3y + z = 7

because

2(1) + 3(2) + (−1) = 7

More generally, a set of linear equations in a particular collection of variables is
called a linear system of equations. Thus, the general system of linear equations in
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SYSTEMS 29

the variables x1, x2,… , xn may be written as follows:

a11x1 + a12x2 +⋯ + a1nxn = b1

a21x1 + a22x2 +⋯ + a2nxn = b2

⋮

am1x1 + am2x2 +⋯ + amnxn = bm

(1.8)

A solution to the system is a column vector that is a solution to each equation in the
system. The set of all column vectors that solve the system is the solution set for the
system.

In particular,

x + 2y + z = 1

3x + y + 4z = 0

2x + 2y + 3z = 2

(1.9)

is a linear system in the variables x, y, and z.
Finding all solutions to this system is not hard. We begin by subtracting three

times the frst equation from the second, producing

x + 2y + z = 1

− 5y + z = −3

2x + 2y + 3z = 2

(1.10)

Any x, y, and z that satisfy the original system also satisfy the system above.
Conversely, notice that we can transform the above system back into the original

by adding three times the frst equation onto the second equation. Thus, any variables
that satisfy the second system must also satisfy the frst. Hence, both systems have
the same solution set. We say that these systems are equivalent:

Definition 1.7 Two systems of linear equations in the same variables are equivalent
if they have the same solution set.

To continue the solution process, we next subtract twice the frst equation from
the third, producing

x + 2y + z = 1

−5y + z = −3

−2y + z = 0

Note that we have eliminated all occurrences of x from the second and third equations.
This system is equivalent with our second system for similar reasons that the second

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

� � � � � � � � � � � � � � �
�

� � � � � � � � � � �
�



30 SYSTEMS OF LINEAR EQUATIONS

FIGURE 1.11 Only one solution.

system was equivalent with the frst. It follows that this system has the same solution
set as the original system.

Next, we eliminate y from the third equation by subtracting twice the second from
fve times the third, again producing an equivalent system:

x + 2y + z = 1

−5y + z = −3

3z = 6

(1.11)

Thus, z = 2. Then, from the second equation, y = 1, and fnally, from the frst equation,
x = −3. Thus, our only solution is [−3, 1, 2]t.

The fact that there was only one solution can be understood geometrically. Each
of the equations in system (1.9) describes a plane in R

3. A point that satisfes each
equation in the system must lie on all three planes. Typically, three planes in R

3

intersect at precisely one point, as shown in Figure 1.11.

Remark. The method we used to compute the solution from system (1.11) is referred
to as back substitution. In general, in back substitution, we solve the last equation
for one variable and then substitute the result into the preceding equations, obtaining
a system with one fewer variable and one fewer equation, to which the same process
may be repeated. In this way, we obtain all solutions to the system.

The process we used to reduce system (1.9) to system (1.11) is called Gaussian
elimination. The general idea is to use the frst equation to eliminate all occurrences
of the frst variable from the equations below it. One then attempts to use the second
equation to eliminate the next variable from all equations below it, and so on. In the
end, the last variable is determined frst (z in our example) and then the others are
determined by substitution as in the example.

We will describe Gaussian elimination in detail in the next section, after consid-
ering several more examples. First, however, we introduce a “shorthand” notation
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